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The motion of an elliptical cylindrical particle immersed in an incompressible 
Newtonian fluid in a narrow channel is examined numerically in the zero-Reynolds- 
number limit. It is assumed that no external forces or torques act on the elliptical 
cylinder, and the effects of inertia forces on the motion of the fluid and the particle are 
neglected. The Stokes equations are solved by a finite-element method for various 
positions and orientations of the cylinder, yielding the instantaneous velocities of the 
particle that satisfy the conditions of zero force and zero torque on the particle. Using 
the computed longitudinal, lateral, and angular velocities of the particle, the evolution 
of the particle’s position and orientation is determined for various initial con- 
figurations. An elliptical cylinder is found to either tumble or oscillate in rotation, 
depending on the particle-channel size ratio, the axis ratio of the elliptical cylinder, and 
the initial conditions. In the first case, the particle rotates continuously in one direction 
that is well approximated by Jeffery’s solution for an elliptical cylinder in unbounded 
shear flow with a so-called equivalent axis ratio ; in the second case, the particle changes 
its direction of rotation during part of each period. In both cases, the particle translates 
with a periodically varying longitudinal velocity, accompanied by a considerable side 
drift due to the walls. The oscillatory motion is more likely to occur when the particle- 
channel size ratio or axis ratio is increased. The tumbling motion is inhibited for elliptic 
cylinders whose size ratios are larger than threshold values that depend on the axis 
ratio. 

1. Introduction 
The study of the creeping motion of a neutrally buoyant particle in tube or channel 

flow is important for understanding blood flow in the microcirculation and the 
rheology of suspensions in bounded domains. In bounded flows, the motion of a 
particle is significantly affected by the boundaries, especially when the particle is 
located close to the boundaries or the particle size is comparable to the tube diameter 
or channel width. 

In the present paper, we study the motion of a single elliptical cylindrical particle 
freely suspended in a narrow channel flow bounded by parallel plates. We consider 
elliptic cylinders as the two-dimensional analogue of ellipsoids. The ellipsoid is 
particularly useful in the modelling of blood and particulate suspensions, since it 
encompasses a wide range of shapes ranging from disks to slender bodies. While 
spherical particles in channel flow translate steadily parallel to the walls, ellipsoids 
generally show a more complicated behaviour and provide much richer information 
relevant to suspension rheology. 

The motion of a neutrally buoyant ellipsoid in an unbounded simple shear flow at 
low Reynolds number was studied by Jeffery (1922), and the Stokes equations were 
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solved exactly in an analytical form for two cases. The first case is for an ellipsoid of 
revolution, i.e. a spheroid: the particle motion was found to consist of a spin about the 
axis of symmetry and a precession of this axis about the vorticity vector of the 
undisturbed flow. The second case is for a general (non-axisymmetric) ellipsoid in the 
special case when the ellipsoid rotates about a principal axis that is permanently 
aligned with the undisturbed vorticity vector. The particle was shown to rotate 
continuously with a periodically varying angular velocity. Since this analytical result 
includes only the ratio of the axes in the plane of the shear flow called equivalent axis 
ratio, the length of the other axis, which is parallel to the vorticity vector, is not 
important. Thus, taking the limit as this axis tends to infinite, we find that an elliptic 
cylinder has the same dynamical behaviour as an ellipsoid with the same equivalent 
axis ratio, as long as the ellipsoid is constrained to rotate about a principal axis that 
is parallel to the undisturbed vorticity. Furthermore, Jeffery showed that the solution 
in the second case is identical to that governing the time evolution of the projection of 
the symmetry axis of spheroids onto the plane of the shear flow. Therefore, in the 
special cases when the symmetry axis lies in the plane of the shear flow, the motion of 
an axisymmetric ellipsoid in an unbounded simple shear flow coincides with that of an 
elliptic cylinder with the same equivalent axis ratio. 

These classical solutions by Jeffery, as well as those by Oberbeck (1876) and 
Edwardes (1892) for translation and rotation of an ellipsoid, were built up using 
ellipsoidal harmonics. Recent developments of different approaches such as the 
singularity method and multipole expansions, which are more generally applicable to 
particulate Stokes flow and to numerical analyses, are thoroughly reviewed by Kim & 
Karrila (1991). 

Effects of quadratic velocity profiles on the motion of an ellipsoid were studied by 
Chwang (1975), who considered the motion of an ellipsoid freely floating in an 
unbounded paraboloidal flow using the singularity method. He found that an ellipsoid 
rotates as if it were immersed in a linear shear flow with a shear rate equal to that of 
the paraboloidal flow evaluated at the centre of the particle, and translates along a 
straight path parallel to the main flow direction without any side drift. 

Regarding the effect of a wall on the motion of an ellipsoid, some approximate 
analyses have been made for an axisymmetric ellipsoid in the vicinity of a plane wall 
in shear flow, mainly in the cases when the symmetry axis lies in the plane of the shear 
flow. Dqbros’ (1985) calculated the angular velocity of a freely suspended ellipsoid by 
the singularity method, and reported that the angular velocity is reduced owing to 
interaction with the wall, especially when the particle is oriented parallel to the wall. 
Hsu (1985) and Hsu & Ganatos (1989) computed the hydrodynamic force and torque 
on an ellipsoid adjacent to a wall by the boundary-integral method. Hsu (1985) 
extended this work to study the free motion of an ellipsoid in shear flow in the vicinity 
of a wall. It was demonstrated that the period of rotation increases as the particle 
approaches the wall, and that the particle executes a periodic motion toward and away 
from the wall as it is continuously tumbling forward. Yang & Leal (1984) studied the 
motion of a slender ellipsoid near a flat fluid-fluid interface with an arbitrary 
orientation, based on slender-body theory, and reported an oscillatory migration of the 
particle perpendicular to the interface. The presence of a wall or interface has been 
found to reduce the rotational velocity of an ellipsoid, and to cause a transverse drift 
in shear flow. 

Although the motion of a freely floating ellipsoid near a single wall has been well- 
studied, theoretical studies of the motion in a tube or channel flow have been limited. 
Wakiya (1957, 1959) treated the problems of an ellipsoid in a circular tube and an 
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elliptic cylinder in a channel by the method of reflections, but his analysis were 
restricted to special cases where the major or minor axis of the particle is parallel to the 
undisturbed flow. Numerical studies of the axisymmetric flow due to the motion of an 
array of spheroids at the centreline of a circular tube reveal no rotary motions, as 
expected from symmetry (Chen & Skalak 1970; Tozeren 1984). Recently, the present 
author used a finite-element method to study the motion of a doublet consisting of two 
rigidly connected equal-sized circular cylinders in a channel flow (Sugihara-Seki 1992). 
It was shown that a doublet translates with a variable longitudinal velocity and exhibits 
a substantial lateral migration. The period of rotation is longer than that for 
unbounded flow. Furthermore, some new types of oscillatory motion were found, in 
which the doublet rotates but changes its direction at every half-period and moves 
transversely in an oscillatory manner around a mean lateral position. 

In this paper, we present a numerical study of the motion of a neutrally buoyant 
elliptical cylindrical particle freely suspended in a two-dimensional Poiseuille flow. We 
consider cases where the width of the channel is comparable to the particle size. The 
Reynolds number is assumed to be small so that the effect of inertia forces on the 
motion of the fluid and the particle can be neglected. The instantaneous velocities of 
the elliptic cylinder at arbitrary positions and orientations in the channel and the flow 
of the suspending fluid are solved numerically by a finite-element method. Using the 
computed particle velocities and rotations, the trajectories of the particle are 
determined for various initial lateral positions and orientations in the channel. It will 
be shown that, as in the case of an ellipsoid near a plane wall (Yang & Leal 1984; Hsu 
1985; DqbroS 1986), the classical tumbling motion of the elliptic cylinder is modified 
owing to the channel walls, and as in the case of a doublet in a channel flow (Sugihara- 
Seki 1992), oscillatory motion is observed. 

In 92 the formulation of the problem is presented with a brief introduction of the 
numerical procedure and a check of numerical accuracy. In $ 3  numerical results are 
given for the motion of an elliptic cylinder in a channel flow, and discussed in 
comparison with the motion in unbounded flows and the doublet motion. 

2. Formulation 
Consider the motion of an elliptic cylinder with semi-axis a and b in an 

incompressible Newtonian fluid between two infinite parallel planes with half channel 
width d, as shown in figure 1. It is assumed that the particle is neutrally buoyant and 
free of external forces and torques including Brownian forces. A Cartesian coordinate 
system (x,y) fixed relative to the channel walls is introduced such that the channel 
centreline is at y = 0, and the centre of the elliptic cylinder is initially at x = 0. The 
position of the elliptic cylinder at any later instant is specified by its centroidal 
coordinate ( X ,  Y) and the angle of inclination 8 of its major axis relative to the flow 
direction (see figure 1). 

At low Reynolds numbers, the fluid motion satisfies the creeping-flow equations: 

op = pv2u, 

v.u = 0, 

where u , p  and ,u are respectively the velocity, the pressure, and the viscosity of the fluid. 
Far upstream and downstream from the particle, the velocity distribution approaches 

that due to Poiseuille flow; i.e. 

u+(Umaz(l - y2 /d2 ) ,0 )  as x++ co. (3) 
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FIGURE 1. Configuration for an elliptic cylinder freely floating in a channel flow. 

We require the no-slip and no-penetration boundary condition on the walls and the 
particle. If the centre of the cylinder translates at a velocity U = (17, V )  and rotates at 
an angular velocity 0, then the boundary conditions are 

u = O  a t y = f d ,  (4) 

and u = U+Qk x r at the surface of the particle, (5 )  

where Y is the radial vector relative to the centre of the particle and k is the unit vector 
in the z-direction. The values of U and Q are determined as part of the solution by the 
condition that the resultant force and torque exerted on the particle by the fluid stresses 
on its surface vanish. 

and (7) 

where 0 and ds represent the stress tensor and a surface element of the particle, 
respectively, and the integrations are carried out over the surface of the particle. 

In the numerical formulation, condition (3) is replaced by 

u = (Um,,(1-y2/d2) ,0)  at x = XfZ, (8) 

where Z is sufficiently larger than d;  in most cases, we adopted Z/d = 5.  Differences 
between the solutions for Z/d = 5 and Z/d = 10 obtained by our method are found to 
be less than 0.1 % for all cases examined. This suggests that l /d  = 5 is large enough for 
condition (8) to be sufficiently accurate. 

Given the position and orientation of the elliptic cylinder, its motion and the flow 
of the suspending fluid in the region D {(x,y): X-Z < x < X +  1, - d  < y < d }  are 
computed by a finite-element method, based on a variational principle (Sugihara & 
Niimi 1984; Sugihara-Seki & Skalak 1988). A variational functional that produces the 
Stokes equations may be obtained as (Olson & Tuann 1978) 

Requiring that J i s  stationary with respect to (u,p) and (U, Q) under the conditions (4), 
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FIGURE 2. Typical grid and nodal points used in the finite-element method. 

(5) and (S), yields equations (l), (2), (6) and (7) as Euler equations of the variational 
principle. 

In the numerical procedure, D is divided into a number of finite elements. A 
representative grid and nodal points are shown in figure 2. Each element is a 
quadrilateral with four corner nodes and four side nodes. Using the values of the 
velocity at the eight nodes and the values of pressure at the four corner nodes, the 
velocity and pressure within each element are approximated by polynomial functions 
in terms of local coordinates. Substituting the expressions for the velocity and pressure 
into (9) and following a variational principle, we obtain a set of linear equations for 
the nodal values of (u,p), Uand 52 (Sugihara-Seki & Skalak 1988). These equations are 
solved numerically using a Gaussian elimination method, under the boundary 
conditions (4), ( 5 )  and (8). In a typical numerical computation with 308 elements, 1036 
nodes and 21 17 unknowns, the CPU time for the computation of one configuration 
with double precision was less than 4 s on the FACOM VP-2600 at the Data Processing 
Center, Kyoto University, Japan. 

The instantaneous translational velocity U and angular velocity 52 of an elliptic 
cylinder, as well as the nodal values of (u ,p)  of the fluid, were computed for a range 
of physically accessible values of the lateral position Y / d  and angle of inclination 8, in 
the range of 0 < Y / d  < 1 and 0 < 8 < +IT, for several values of the aspect ratio 
a( = a/b)  and size ratio p( = ab/d2) .  Using the instantaneous velocities of the particle, 
the temporal changes of X ,  Y and 8 were calculated as follows. First, the longitudinal 
velocity U,,, the lateral velocity V,, and the angular velocity Q,, of the particle 
appropriate to the current configuration (X,,, Yol8,,) are obtained by a bilinear 
interpolation using a set of the computed velocities at neighbouring points in the 
(Y ,  8) space. Then, the current configuration is changed to a new one in a small time- 
step At in such a way that X‘ = X, + U,, At, Y’ = Y, + V, At and 8’ = 8,, + 52, At,  where 
(X’, Y’, 0’) represent the new configuration. By repeating this procedure, the transient 
motion of the particle is determined for arbitrary initial configurations (Sugihara-Seki 
& Skalak 1989; Sugihara-Seki, Secomb & Skalak 1990). A step size At is chosen so that 
the particle returns to the initial configuration after a period of motion, within an 
accuracy of 

In order to assess the numerical accuracy of the present finite-element method, we 
compare our results with exact solutions or approximate solutions obtained by a 
method of reflections or a numerical method, in three cases of (a) a circular cylinder 
at the channel centreline in a Poiseuillle flow, (b) a small circular cylinder adjacent to 
a wall in a Couette flow, and ( c )  a small elliptic cylinder in a channel flow, with the 
major or minor axis parallel to the walls. 

in the (Y/d ,  @space. 
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FIGURE 3. Non-dimensional longitudinal velocities of neutrally buoyant circular cylinders in a 
Poiseuille flow placed midway between the channel walls. -, approximate solutions by Takaisi 
(1955, 1956); ---, approximate solutions by Faxen (1946); +, numerical solutions by Dvinsky & 
Popel (1987); 0, present results. 

(a) A circular cylinder in channelflow 
The forces exerted on a small circular cylindrical particle located midway between 

the channel walls were analytically calculated by the method of reflections, when it is 
translating steadily along the channel in an otherwise quiescent fluid, or held fixed in 
a Poiseuille flow (Faxen 1946; Takaisi 1955, 1956). These two solutions are 
superimposed to get a translational velocity of a circular cylinder freely suspended in 
a Poiseuille flow. Dvinsky & Popel computed a translational velocity of a neutrally 
buoyant circular cylinder in a channel flow, utilizing a numerically generated 
boundary-conforming coordinate system (Dvinsky 1983 ; Dvinsky & Popel 1987). 
Figure 3 gives a comparison of the translational velocities obtained by these methods 
and the present method, for a freely floating circular cylinder located at the channel 
centreline. Our solutions coincide with the approximate solutions by Faxen and 
Takaisi, for the radius ratio a/d( = b / d )  < 0.4. In the range of larger ratios where the 
approximate solutions become inapplicable, our solutions agree with the numerical 
results by Dvinsky & Popel (1987), which give somewhat lower values for smaller 
ratios. Thus, the particle velocities obtained by the present method are shown to be 
accurate for particle size to channel width ratio up to 0.9. For larger ratios, there is no 
available data with which to compare our solutions. In the present study we consider 
elliptic cylinders whose major axis is less than 0.95 of the channel width. 

(b) A circular cylinder near a wall in a CouetteJEow 
The motion of a circular cylinder in shear flow near a stationary plane wall can be 

computed exactly using bipolar coordinates. The translational and rotational velocities 
are given as (Darabaner, Raasch & Mason 1967): 

where f = (1 - (a/y,)’);, U, is the undisturbed translational velocity of the cylinder (i.e. 
with no wall effect), 52, is the undisturbed angular velocity, and y o  is the distance of the 
cylinder centre from the wall. In order to compare our result with the above exact 
solution, we applied the present numerical scheme to compute the motion of a small 
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FIGURE 4. 0, the longitudinal velocity and 0 ,  the angular velocity of a neutrally buoyant circular 
cylinder near a stationary wall in a Couette flow (a /d  = 0.02). The straight lines represent exact 
solutions (equations (lo)), for a circular cylinder in shear flow adjacent to a plane wall. 

p . . .  0.036 0.009 

a... 2 1 0.5 2 1 0.5 
Wakiya (1959) 0.991 0.981 0.965 0.998 0.995 0.991 
Present results 0.991 1 0.9824 0.9654 0.9978 0.9955 0.9907 

TABLE 1. Non-dimensional longitudinal velocity U /  U,,, of neutrally buoyant elliptic cylinders with 
the semi-axis a parallel to the channel walls at the centreline in a Poiseuille flow 

circular cylinder adjacent to a wall in a Couette flow, where the neighbouring wall is 
stationary and the distant wall translates steadily in its plane. Figure 4 shows the results 
for a circular cylinder with a/d( = b / d )  = 0.02. In this case, the channel width is a 
hundred times the cylinder radius, so that the effect of the distant wall on the motion 
of the particle is considered to be small. The excellent agreement between our results 
and the exact solution (10) indicates that the computed particle velocities are accurate 
within 0.5% for gap width as small as one-tenth of the particle radius (yola = 1.1 or 
[ = 0.417). The error becomes approximately 1 % for yo/a  = 1.06 (6 = 0.332), and 4 % 
for yo/a  = 1.04 (6 = 0.275). To get more accurate results, finer meshes are required, 
especially in the gap region. In the present study, computations were performed only 
for the gap width larger than one-tenth of (ab)z. 

(c) A small elliptic cylinder in channelflow 
Wakiya (1959) used the method of reflections to consider an elliptic cylinder in a 

channel flow, with the major or minor axis parallel to the walls. As shown in table 1, 
a good agreement is obtained between his solutions and the present results. 
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FIGURE 5. (a) Velocity vectors of the suspending fluid relative to the longitudinal velocity of a 
neutrally buoyant elliptic cylinder with a = 2 and B = 0.32 (a/d = 0.8, b /d  = 0.4), located at the 
channel centreline with t? = 0 . 2 ~ .  The direction of the lateral motion of the cylinder is also shown by 
the arrow at the particle centroid. (b) Pressure contours around the particle. The numbers denote the 
values of ( p - p , )  d/,uUu,,,, where p ,  represents the average of the upstream (at x = X-Z) and 
downstream pressures (at x = X +  Z). 

3. Results and discussion 
3.1. Velocity field and particle velocities 

As an example of computed results, figures 5(a) and 5(b) show velocity vectors and 
pressure contours in the suspending fluid for an elliptic cylinder with a = 2 and 
/3 = 0.32 located at the centreline at an inclination angle 0 = 0.27~. In figure 5(a), each 
arrow represents the velocity vector of the fluid relative to the longitudinal velocity of 
the cylinder U. In this frame of reference, the walls move from right to left at velocity 
U. Since the cylinder is placed midway between the walls, it exhibits only a lateral 
motion with no rotation, as expected from symmetry and reversibility arguments. It is 
interesting to note the eddies upstream and downstream of the particle extending to 
infinity (Ganatos, Weinbaum & Pfeffer 1982). Figure 5(b) shows that the pressure 
varies considerably along the circumference of the particle, especially in the gap regions 
between the particle and the walls. The upward migration of the particle may be mainly 
attributed to the negative pressure acting on the particle in the upper gap and the 
positive pressure in the lower gap. 

Next, we consider the velocities of cylinders at various configurations. Figure 6 
shows the non-dimensional velocities U/W,,,, V/ U,,,, s2d/Um,,, and the additional 
pressure drop A ( p  -p,)  d/,uUm,, due to the particle, for elliptic cylinders with a = 2 
and various size ratios located at some lateral positions. Here, p o  denotes the pressure 
in the absence of the cylinder (i.e. owing to the undisturbed Poiseuille flow) and A 
denotes the difference between the upstream (at x = X -  I )  and downstream values (at 
x = X+c). Generally, the curves shown in figure 6 are similar in shape for various 
values of /3( = ab/d2).  The longitudinal velocity of the cylinder is highest when its major 
axis is aligned with the direction of flow (0 = 0) and lowest when it is at right angles 
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FIGURE 6. Non-dimensional velocities U/ U,,, V/  Urn,,, Qd/ U,,,, and additional pressure drop 
A(p-po)d/pUm,, ,  for neutrally buoyant elliptic cylinders with a = 2 and (a) p = 0.125, (b) /3 = 0.25 
and (c)  B = 0.32, at lateral positions: A, Y / d  = 0 ;  +, Y / d  = 0.15; x , Y / d  = 0.3. 

(8 = :IT). The lateral velocity of the cylinder at the channel centreline is positive for 
orientations 0 < 8 < $IT, and zero for 8 = 0 and an. For off-centre positions, V is 
positive at small inclinations and negative at large inclinations. A change in the sign of 
the lateral velocity at a particular orientation between 0 and has also been reported 
for an ellipsoid in shear flow adjacent to a wall (Hsu 1985). 

The angular velocity vanishes when the centre of an elliptic cylinder is located at the 
channel centreline for all inclinations 0. For off-centre particles, L? is minimum at 
0 = 0 and increases with increasing 8 to a maximum at 6 = in. It is rather peculiar that 
the angular velocity at small inclination angles decreases with increasing /3 at given 
lateral positions, until it becomes negative for a large elliptic cylinder with /3 = 0.32 (see 
figure 6 4 .  In previous studies, the rotary motion of a neutrally buoyant ellipsoid was 
shown to be always in the same direction as the vorticity of the undisturbed flow, in 
an unbounded or bounded shear flow (Jeffery 1922; Dqbroi 1985; Hsu 1985), and in 
unbounded paraboloidal flow (Chwang 1975). That is also true for a doublet of 
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FIGURE 7. (a) Velocity vectors and (b) pressure contours around an elliptic cylinder with ct = 2 
and B = 0.32, at Y / d  = 0.3 and 0 = 0 (legend as in figure 5). 

circular cylinders in contact in a channel flow (Sugihara-Seki 1992). Therefore, the 
presence of a negative angular velocity (figure 6c)  appears as an unusual characteristic 
of the elliptic cylinder in channel flow. Figure 7, which shows the velocity vectors and 
pressure contours around an elliptic cylinder with 01 = 2 and /3 = 0.32 at Y / d  = 0.3 and 
8 = 0, may provide insights to understand this phenomenon. As a particle approaches 
a wall or a particle becomes larger relative to the channel width, and thus the gap width 
between the particle and a wall is reduced, figure 7(b) indicates that the pressure 
increases in the downstream part of the gap, and decreases in the upstream part. This 
variation in pressure will generate a negative torque on the particle, opposing the 
positive torque generated by shear stresses mainly due to the Poiseuille flow. If the gap 
is so narrow that the negative torque due to the pressure variation is large enough, then 
it will tend to rotate in the negative direction, as shown in figure 6 ( c )  (see also figure 

Another interesting feature of the rotary motion shown in figure 6 is that at 8 = in, 
the angular velocity for Y / d  = 0.3 in figure 6(a)  is equal to approximately twice that 
for Y / d  = 0.15. Since the shear rate in the Poiseuille flow is proportional to the lateral 
coordinate, this suggests that the ratio of the angular velocity of a small cylinder at 
8 = in and the local shear rate of the undisturbed flow is fairly insensitive to the lateral 
position of the particle. This trend has been also found for an ellipsoid in shear flow 
near a wall (DgbroS 1985; Hsu 1985). A further examination of the numerical results 
shows that, although this ratio is nearly constant in a certain range of lateral positions, 
it gradually increases as the particle approaches the wall up to the gap width which is 
approximately equal to one-tenth of (ab);. This is in contrast to the result that the ratio 
of the angular velocity at 8 = 0 to the local shear rate decreases with increasing the 
lateral position of the particle. 

The additional pressure drop due to the cylinder depends strongly on the orientation 
of the particle, as well as on its size and lateral position. As expected, it is a minimum 
at 8 = 0 and increases with increasing 8 to its maximum at 8 = in, and the value at 
8 = fn  is several times that for 8 = 0. The increase in the additional pressure drop with 

8 (4. 



585 

4 

t I 

3.0 

x 5  I 

T -  I 

t x4 

0 0.25 0.50 0 0.25 0.50 0 0.25 0.50 

e h  
FIGURE 8. Non-dimensional velocities U /  Urn,,, V /  Urn,,, Qd/ Urn,,, and additional pressure drop 
A(p-po)d/pUrn,, ,  for neutrally buoyant elliptic cylinders with p =  0.18 and (a)  01 = 1.5, (b) a = 2 
and (c) a = 3, at lateral positions: a, Y / d  = 0 ;  +, Y / d  = 0.15; x , Y / d  = 0.3. The values for a 
circular cylinder with a = 1 and ,8 = 0.18 are ---, for Y / d  = 0; -'-, for Y / d  = 0.15; --, for 
Y / d  = 0.3. 

particle orientation is more significant for larger particles. It is interesting to note that 
the additional pressure drop computed for a given lateral position of the cylinders with 
various /3 (and/or various a) is well correlated with the minimum gap width between 
the particle and the channel walls. This result suggests that the increase of the 
additional pressure drop with particle orientation shown in figure 6 (see figure 8 also) 
is attributed to the decrease of the gap width with increasing 0, and that the influence 
of the orientation, the axis ratio, or the longitudinal length of the particle on the 
additional pressure drop is not large if the gap width is kept constant. 

In figure 8, the variables shown in figure 6 are plotted for cylinders with size ratio 
,4 = 0.18 and various axis ratios. The variations of all variables with the inclination 
angle 0 are similar for the different a, but they are more pronounced for slender 

20 FLM 257 
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FIGURE 9. Non-dimensional lateral velocity V' = V /  U,,, and angular velocity 52' = Sad/ U,,, of an 
elliptic cylinder with a = 2 and /3 = 0.25 ( a / d  = 0.707, b /d  = 0.354). Each arrow shows a vector 
(V',9') when the lateral position and orientation of the elliptic cylinder are represented by the 
coordinates ( Y / d ,  0) at the origin of the arrow. -, temporal variations of the lateral position and 
orientation of the cylinder starting from several initial values. - .-, the critical configurations at 
which the cylinder touches the channel walls. 

particles with large 01. In particular, as a increases at given Y,  the angular velocity at 
small inclination angles decreases and becomes negative at 01 = 3 (see figure 8 c), while 
the angular velocity near 0 = +x increases with the axis ratio a. It is seen that the 
horizontal straight lines for a circular cylinder with B = 0.18 lie between the 
corresponding values at 6' = 0 and $c for elliptic cylinders. 

3.2. Trajectories of elliptic cylinders 
In order to analyse the trajectories of an elliptic cylinder starting from various initial 
configurations, vectors of (V/  Urnax, Qd/ U,,,) computed for an elliptic cylinder with 
a = 2 and p = 0.25 are plotted in the ( Y / d ,  13) plane in figure 9. The solid curves 
show temporal history in lateral position and orientation of some typical cases. 
It appears that both V and Q vanish at ( Y / d ,  0) = (0, (nl2)x) (n = 0, k 1, & 2), which 
means that the particle at these configurations undergoes a steady motion. The points 
(Y /d ,  19) = (0, k ix) are neutrally stable while the points (0,O) and (0, -t x) represent 
saddle points. It is obvious from the solid curves representing the particle trajectories 
that all particle motions (except the steady state points) are periodic, and three types 
of motion of the elliptic cylinder may occur depending on its initial conditions: type 
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FIGURE 10. Time courses of the longitudinal and lateral positions X/x, Y/d ,  the orientation angle 
8, and the additional pressure drop A(p  -p,) d/,uU,,,, over a complete cycle for an elliptic cylinder 
with a = 2 and j9 = 0.25. The time courses of the velocities of the elliptic cylinder U/U,,,, V/U,,,,,, 
and C?d/U,,, are also shown by the dashed curves. (a) Type (i) motion starting from (Y/d ,  8) = 
(0,2,0), (b) type (ii) motion starting from (0,0,27c), and (c) type (iii) motion starting from (0.33,O). 
-.- , the temporal average of the additional pressure drop. In (c), the angular velocity is scaled up 
by 10 times, for clarity. 

(i), Y / d  is never zero and the particle continuously rotates in the same direction; type 
(ii), a particle located near the centreline rotates changing its direction as it crosses 
Y / d  = 0 at every half period; type (iii), a particle far from the centreline oscillates in 
rotation and lateral position, with the major axis almost parallel to the channel wall. 

Typical examples of evolutions of longitudinal and lateral positions and orientation 
X/T, Y/d ,  8, and the additional pressure drop A ( p  -po)  d/pUrn,,, as well as the particle 
velocities U/ Urnax, V /  Urn,,, ad/ Urn,,, are plotted over a period as a function of time 
t/Tin figure 10. Here, T represents a period of motion, and Xdenotes the longitudinal 
distance at which the particle advances over a period. For type (i) and type (ii) motions, 
the longitudinal velocity has a minimum value at t /T = 0.25 and 0.75 where its major 
axis is perpendicular to the flow, and it is almost constant for other orientations (see 
figure 10a, b). This longitudinal surge of the elliptic cylinder is analogous to the 
‘jerking’ motion of an ellipsoid in unbounded paraboloidal flow, in which the ellipsoid 
translates with a periodically varying speed (Chwang 1975). Since in unbounded 

20-2 
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uniform or shear flow, an ellipsoid translates at a constant velocity, the longitudinal 
surge is considered to be a characteristic of paraboloidal flows. The channel walls also 
affect the particle velocity, and the effect varies according to the particle orientation 
and separation from the walls. Thus, the combined effects of the Poiseuille velocity 
profile and the channel walls contribute to the variation in the computed longitudinal 
velocity . 

With regard to transverse drift, the elliptic cylinder has a considerable lateral velocity 
for all types of motion. This is undoubtedly due to wall effects, because no side drift 
takes place for an ellipsoid or an elliptic cylinder in an unbounded shear flow (Jeffery 
1922) or an ellipsoid in an unbounded paraboloidal flow (Chwang 1975). In particular, 
the lateral velocity markedly varies around t /T  = 0.25 and 0.75 in figure lO(a), and the 
particle moves from one side of the channel to the other at every half period in figure 
lO(b). 

The curves of angular velocity and orientation in the type (i) motion (figure 1Oa) 
show that the cylinder continuously rotates in one direction during a period, slowly 
when it is aligned with the undisturbed flow, and faster when it is aligned perpendicular 
to the flow. This rotary motion of an elliptic cylinder is reminiscent of its tumbling 
motion in unbounded shear flow, which was illustrated by Jeffery (1922). As the axis 
ratio a or size ratio /3 increases at given initial conditions, the angular velocity in the 
type (i) motion behaves more like a delta function with peaks situated at t /T  = 0.25 
and 0.75, an the orientation 8 behaves more like a step function with step discontinuities 
around the stationary values, 0 and +n. In the type (ii) and type (iii) motions, on the 
other hand, the particle rotates in an oscillatory manner. For example, in figure lO(b), 
starting from an initial orientation, say 8', the cylinder rotates in the counter-clockwise 
direction within a half-period, as 0 increases to a maximum orientation at t /T  = 0.5. 
In the second half-period of motion, the particle rotates in the clockwise direction to 
return to 0 = 8' at t /T  = 1. It is noted that the maximum angle at t /T  = 0.5 is equal 
to 7c - 6 ,  which may be derived from considerations of the flow geometry. In the type 
(iii) motion, the variations in orientation and angular velocity are small (note that the 
angular velocity in figure 1O(c) is scaled up by ten times). This reflects the small oval 
trajectories of the type (iii) motion shown in figure 9. As a limiting case of the type (iii) 
motion, closed loops of the particle path in figure 9 are reduced to single points (points 
P and I"). At these points, both Y and Q vanish, so that the particle motion is steady. 

The additional pressure drop due to the presence of an elliptic cylinder also varies 
significantly with time, owing to variations in the particle positions and orientations, 
and has sharp peaks when the cylinder is oriented perpendicular to the flow direction 
or placed close to the channel walls. The peaks are sharper for the type (i) motion, as 
the axis ratio a or the size ratio p increases at given initial conditions. 

In figure 1 1, the Y-coordinate of the point P, Y *, is plotted as a function of the size 
ratio p, or the non-dimensional length of the semi-major axis a/d. Figure 11 (a) shows 
that Y* decreases with increasing p, until it reaches zero at a threshold p*, which 
depends on the axis ratio a. The threshold value p* for a = 2 is found to be 
approximately equal to 0.334. In figure 11 (b), the three curves approach each other, 
suggesting that the length of the major axis has a stronger influence than the size ratio 
to determine the value of Y *. The threshold values of a/d  corresponding to p* decrease 
with increasing a. It is of interest that Y * at given a/d is smaller for larger a. This trend 
demonstrates that the region of type (iii) motion in the (Y/d ,  O)-plane extends closer to 
the origin for more slender elliptic cylinders with constant major axes (see figure 9). 

On the other hand, an increase in Y* with decreasing ,8 or a / d  for given a shown as 
figure 11 indicates that for small elliptic cylinders, the region of type (iii) motion in the 
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FIGURE 11. Non-dimensional lateral positions, Y * / d ,  at which both of V and a vanish for elliptic 
cylinders aligned with the undisturbed flow (0 = 0) ,  with 0, 01 = 1.5; 0 ,  a = 2; and +, a = 3. (n) 
Y *  j d  us. /3, and (b) Y * / d  us. a jd .  

( Y / d ,  O)-plane is restricted to two marginal regions near the Y/d-axis, just below the 
maximum and just above the minimum of Y / d  (see figure 9). In other words, a small 
elliptic cylinder undergoes the type (iii) motion only when it is located in the vicinity 
of the channel walls, with its major axis almost parallel to the undisturbed flow. In the 
type (iii) motion, the cylinder has small lateral and angular velocities, and it does not 
change the lateral position and orientation at all if the initial configuration coincides 
with the points corresponding to P or P' in figure 9. Thus, the results show that small 
oscillatory motions of elliptic cylinders are possible when they are located close to the 
channel walls, with their major axes nearly aligned with the undisturbed flow. The 
possibility of such a nearly steady motion of elliptic cylinders is due to the presence of 
the walls. 

In order to illustrate the motion of an elliptic cylinder with the size ratio above the 
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FIGURE 12. Non-dimensional lateral velocity V’ = V/U,,, and angular velocity B’ = Bd/U,,,,, of an 
elliptic cylinder with a = 2 and p = 0.4 (a /d  = 0.894, b/d  = 0.447). -, representative trajectories 
of the elliptic cylinder. 

threshold ,8*, vectors of (V/Urn,,, ad/ Urn,,) and some representative trajectories of an 
elliptic cylinder with 01 = 2 and ,8 = 0.4 are plotted in the ( Y / d ,  @)-plane in figure 12. 
The whole region near the Y/d-axis is covered by the type (iii) motion, and the type (i) 
motion vanishes. It is interesting to note that the origin in the (Y/d,  0) plane is neutrally 
stable in figure 12, while it is unstable in figure 9. An explanation as to why the origin 
in figure 12 is neutrally stable is suggested by lubrication theory and computations for 
a closely fitting particle in a channel which may be similar for a particle in a tube 
presented by Secomb & Hsu (1993). At present there is no rigorous explanation for the 
unstable behaviour at the origin in figure 9. 

Typical examples of the time courses of particle velocities, positions, and orientation, 
and the additional pressure drop for an elliptic cylinder with 01 = 2 and ,8 = 0.4 are 
plotted in figure 13. It is seen that each curve in figure 13(a) for the type (ii) motion 
is similar in shape to the corresponding one in figure 10 (b), although the variation over 
a period is more significant in figure 13 (a). In contrast, the behaviours of the variables 
in the type (iii) motion shown in figure 13(b) are qualitatively different from those in 
figure lO(c). In figure 13(b), the longitudinal velocity and additional pressure drop 
have dual peaks within a period, and the particle moves from one side of the channel 
to the other, changing the direction of rotation at every half period. These features are 
common to the type (ii) motion (see figure 13 a). This similarity in the type (ii) and type 
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FIGURE 13. Time courses of the positions and orientation of an elliptic cylinder X / z ,  Y /d ,  8, the 
velocities U/ Urn,,, V/ Urn,,, ad/ Urn,,, and the additional pressure drop A(p -po) d/,uU,,,,, over a cycle 
for an elliptic cylinder with tc = 2 and p = 0.4. (a) Type (ii) motion starting from (Y/d,  8) = (0,0.271), 
(b) type (iii) motion starting from (0,O.OSn). 

(iii) motions in figure 13 may be understood by noting a resemblance in the particle 
trajectories in figure 12; they are both closed loops, encircling neutrally stable points 
( Y / d ,  0) = (0, +in) (type (ii) motion) or (0,O) (type (iii) motion), where (0,O) and 
(0, +an) represent the configurations of the particle located at the channel centreline 
with the major or minor axis aligned with the flow, respectively. 

The amplitudes of the oscillation in the type (ii) and type (iii) motions increase as the 
initial configuration is farther apart from the points (0,O) or (0, +;?I) in the (Y /d ,  0)- 
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P 
FIGURE 14. Area ratios of the regions of the type (i), type (ii) and type (iii) motions in the ( Y / d ,  0)- 
plane, for elliptic cylinders with 0, a = 1.5; a, a = 2; and +, a = 3. The solid curves represent the 
area of the type (iii) motion with respect to the physically possible configurations in the ( Y / d ,  @-plane 
(see figures 9 and 12), the differences between the solid curves and the corresponding dashed curves 
represent the area ratios of the type (ii) motion, and the remaining areas (up to the area ratio = 1) 
correspond to the area ratios of the type (i) motion. 

plane. For example, an elliptic cylinder starting near the points (0,O) or (0, &an) will 
stay around the initial configurations, but a particle starting near a channel wall will 
approach the other wall in half a period. It is interesting to note that, in general, in the 
type (ii) motion the variation of the orientation within a period is more pronounced 
than that of the lateral position, while in the type (iii) motion the converse is true. 

3 .3 .  Probability of each type of motion 
A comparison between figures 9 and 12 suggests that an increase in ,8 results in a 
decrease in the area of the type (i) motion in the (Y /d ,  @-plane, and an increase in the 
areas of the type (ii) and type (iii) motions. Figure 14 gives the area of each type of 
motion with respect to the physically possible configurations in the ( Y / d ,  @-plane, as 
a function of /3 for various axis ratios. As the size ratio /3 increases, the area ratio of 
the type (i) motion decreases until it vanishes at ,8 = ,8*. The area ratios of the type (ii) 
and type (iii) motions, on the contrary, increase monotonically with increasing /3 up to 
p*. Since an alternative plot of the area ratios as a function of a/d makes the curves 
closer to each other, it is suggested that the major axis length rather than /3 is a 
dominant determinant of the type of particle motion. 

Our study indicates that no particular positions or orientations of an elliptic cylinder 
in a channel are intrinsically favoured. If the lateral position and orientation of the 
elliptic cylinder are initially distributed randomly, the area ratios shown in figure 14 
may represent the probability of the corresponding type of motion being observed. 
Figure 14 suggests that for cylinders with a major axis smaller than 50 YO the channel 
width, almost all particles exhibit type (i) motion, while for cylinders with a major axis 
larger than 7C90 YO the channel width, they execute the type (ii) or type (iii) motion, 
and none of them undergoes the type (i) motion. 
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FIGURE 15. Tan 9 us. tan (2xtlT) in the type (i) motion for elliptic cylinders in a channel flow, with 
a = 2 and various p .  The lateral positions of the elliptic cylinders at 4 = 0 are --, f l / d  = 0.15; 
_ _ -  , Y’/d = 0.3. . * . . , equation (1 1) with r, = 2, for comparison. 

3.4. Comparison with the motion of an elliptic cylinder in unboundedflows 
The following equations in the notation given by Jeffery (1922) describe the rotary 
motion of an elliptic cylinder in an unbounded shear flow: 

tan q5 = re tan (2xt/T), (1 1) 

and 

where re represents the axis ratio equal to a( = a/b), T denotes the period of motion, 
y represents the rate of shear, and $ is the angle between the minor axis and the flow 
direction, which is equal to (Ex - 6) in the present notation (see figure 1). 

For an elliptic cylinder in a channel flow, the time course of the orientation variation 
during a period shown in figure lO(a) suggests a similarity of the type (i) motion to the 
tumbling motion of Jeffery’s solution. To compare our result of the type (i) motion 
with the tumbling motion in an unbounded shear flow, some results of our computation 
are replotted in the form of tan$ us. tan(2ztlT) in figure 15, corresponding to 
equation (1 1). It is obvious that tan $ is almost linearly proportional to tan (2xtt/T), 
and this relationship approximately holds for even rather large elliptic cylinders 
compared to the channel width, such as p = 0.25. 

As is seen in figure 15, the slopes of the tan4 us. tan(2xtlT) curves, or the values 
of re in equation (1 l), which is called an equivalent axis ratio, are different from the 
actual axis ratio a( = a/b) in a channel flow. The values of re can be also evaluated from 
equation (12), using the period of motion and the local shear rate of the Poiseuille flow 
evaluated at the particle centroid. The values of re determined from equations (1 1) and 
(12) are plotted in figure 16, as a function of the lateral position of the cylinder at 
$ = 0, Yt, for a = 2 with several values of p. It is seen that the corresponding two values 
are close to each other except for larger particles. This suggests that the rotary motion 
of cylinders in the type (i) motion is well approximated by equations (1 1) and (12) with 
an appropriate equivalent axis ratio re. The values of re are shown to be larger than 
a( = 2) for all cases investigated, and increase with increasing ,8 for given Yt. More 
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FIGURE 16. The equivalent axis ratios re for elliptic cylinders with a = 2 and various p, evaluated 
-, from equation (1 1) and ---, from equation (12) using the computed data for elliptic cylinders 
motion in a channel flow. The size ratios are ., /3 = 0.045; A, /3 = 0.125; 0,  fi  = 0.18; 0, /3 = 0.25. 

interestingly, an increase of re with increasing Yt for given /3 indicates that, as a cylinder 
approaches a wall, the period of rotation increases owing to wall effects. 

Stover & Cohen (1990) studied experimentally the motion of rodlike particles freely 
suspended in a channel flow, and reported that a particle rotates accurately obeying 
Jeffery’s equation, if an equivalent axis ratio is calculated from the observed period of 
rotation, by use of equation (12). It was also demonstrated that the period of rotation 
increases up to 50%, as the particle approaches a wall (figure 7 in Stover & Cohen 
1990). These observations are in good agreement with our results shown in figures 15 
and 16, as long as the particle is small compared to the channel width. 

3.5 .  Comparison with the motion of a doublet in channelJtow 
In the preceding study of the present author (Sugihara-Seki 1992), the motion of a 
doublet composed of two equal-sized cylinders held in rigid contact in channel flow was 
analysed. Since the rotary motion of a doublet in unbounded linear flow is known to 
be equivalent to that of an elliptic cylinder with the axis ratio equal to 1.83 (Raasch 
1961 ; Darabaner, Raasch & Mason 1967), it is interesting to compare their motions in 
channel flow. Instead of the type (iii) motion, another type of oscillatory motion was 
obtained for doublets, in which a doublet located near the channel centreline oscillates 
in orientation with an amplitude less than in, and moves transversely in an oscillatory 
manner with its mean at the centreline. It was also demonstrated that the type (i) 
motion is present as long as it is physically possible, while for elliptic cylinders the type 
(i) motion is inhibited for p > p*. These results suggest that a similarity in the motions 
of a doublet and an elliptic cylinder obtained in unbounded flows does not necessarily 
hold in channel flows, especially in narrow channel flows. The difference in the particle 
motion is undoubtedly due to the fact that the hydrodynamic interaction between the 
particle and the walls is significantly affected by the precise shape of the particle. For 
the elliptic cylinder shown in figure 7, a pair of the downstream positive and upstream 
negative pressures appears in the narrower gap region between the particle and the 
wall, whereas for a doublet at similar configurations, there are two pairs, i.e. one pair 
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for each cylinder, of such pressure variations. These differences in the pressure 
distributions result in the rotation of the elliptic cylinder in the clockwise direction (see 
figures 6c and 8 c )  and the rotation of the doublet in the opposite direction at these 
configurations. 

4. Concluding remark 
We have presented only two-dimensional numerical solutions for the motion of 

elliptical cylinders in a channel flow. Since Hu, Joseph & Fortes (1992) showed that 
many of the three-dimensional observations of the behaviour of particles sedimenting 
in a channel are coincident with their two-dimensional numerical results, we expect 
that the present solutions will also predict some features of three-dimensional 
solutions. However, detailed three-dimensional analyses will be required in cases when 
the particle approaches a wall to a near contact, because in such cases the difference 
between two- and three-dimensions, i.e. a line contact us. a point contact may become 
impor tan t . 
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